Training Algorithm for Neuro-Fuzzy Network Based on Singular Spectrum Analysis
نویسندگان
چکیده
In this article, we propose a combination of an noise-reduction algorithm based on Singular Spectrum Analysis (SSA) and a standard feedforward neural prediction model. Basically, the proposed algorithm consists of two different steps: data preprocessing based on the SSA filtering method and step-by-step training procedure in which we use a simple feedforward multilayer neural network with backpropagation learning. The proposed noise-reduction procedure successfully removes most of the noise. That increases long-term predictability of the processed dataset comparison with the raw dataset. The method was applied to predict the International sunspot number RZ time series. The results show that our combined technique has better performances than those offered by the same network directly applied to raw dataset.
منابع مشابه
Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملEvaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station
Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...
متن کاملAdaptive Network-based Fuzzy Inference System-Genetic Algorithm Models for Prediction Groundwater Quality Indices: a GIS-based Analysis
The prediction of groundwater quality is very important for the management of water resources and environmental activities. The present study has integrated a number of methods such as Geographic Information Systems (GIS) and Artificial Intelligence (AI) methodologies to predict groundwater quality in Kerman plain (including HCO3-, concentrations and Electrical Conductivity (EC) of groundwater)...
متن کاملComparing diagnosis of depression in depressed patients by EEG, based on two algorithms :Artificial Nerve Networks and Neuro-Fuzy Networks
Background and aims: Depression disorder is one of the most common diseases, but the diagnosis is widely complicated and controversial because of interventions, overlapping and confusing nature of the disease. So, keeping previous patients’ profile seems effective for diagnosis and treatment of present patients. Use of this memory is latent in synthetic neuro-fuzzy algorithm. P...
متن کاملA neuro-fuzzy system modeling with self-constructing rule generationand hybrid SVD-based learning
We propose a novel approach for neuro-fuzzy system modeling. A neuro-fuzzy system for a given set of input-output data is obtained in two steps. First, the data set is partitioned automatically into a set of clusters based on input-similarity and output-similarity tests. Membership functions associated with each cluster are defined according to statistical means and variances of the data points...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1410.1151 شماره
صفحات -
تاریخ انتشار 2014